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Abstract. We consider the general problem of motion of a rigid body about a fixed point under
the action of an axisymmetric combination of potential and gyroscopic forces. We introduce
six cases of this problem which are completely integrable for arbitrary initial conditions. The
new cases generalize by several parameters all, but one, of the known results in the subject of
rigid body dynamics. Namely, we generalize all the results due to Euler, Lagrange, Clebsch,
Kovalevskaya, Brun and Lyapunov and also their subsequent generalizations by Rubanovsky
and the present author.

1. Introduction

It is well known that integrable systems are a rare exception in dynamics. It is thus of great
importance to construct as many integrable problems as possible and to consider every one
of them in the most general possible form. The problem considered here is the general
problem of motion of a rigid body about a fixed point under the action of a combination
of conservative axisymmetric potential and gyroscopic forces. The equations of motion for
this problem can be written in the Euler–Poisson form [1]

Aṗ + (C − B)qr + qµ3− rµ2 = γ2
∂V

∂γ3
− γ3

∂V

∂γ2

Bq̇ + (A− C)pr + rµ1− pµ3 = γ3
∂V

∂γ1
− γ1

∂V

∂γ3

Cṙ + (B − A)pq + pµ2− qµ1 = γ1
∂V

∂γ2
− γ2

∂V

∂γ1

γ̇1+ qγ3− rγ2 = 0 γ̇2+ rγ1− pγ3 = 0 γ̇3+ pγ2− qγ1 = 0 (1)

whereA, B, C are the principal moments of inertia,p, q, r are the components of the
angular velocity of the body andγ1, γ2, γ3 are the components of the unit vectorγ fixed
in space in the direction of the axis of symmetry of the force fields applied to the body, all
being referred to the principal axes of inertia at the fixed point. The potentialV and the
vectorµ = (µ1, µ2, µ3) depend only on the Poisson variablesγ1, γ2, γ3.

As was shown in [1], in their general form different terms of equations (1) may be
interpreted in one or more of the following ways.

The potentialV can be understood as the result of the scalar interactions of a
gravitational field with the mass distribution in the body, an electric field with a permanent
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distribution of electric charges and a magnetic field with some magnetized parts or steady
currents in electric circuits on the body. A constant term of the vectorµ is the so-called
gyrostatic moment that appears when the body carries a symmetric rotor while the variable
terms appear as a result of the Lorentz effect of the magnetic field on the electric charges.
The gyrostatic moment can also be due to internal cyclic degrees of freedom such as the
circulation of fluid in holes inside the body or forced stationary motions such as motors and
the flow of fluids in circuits in the body.

An interesting problem when the body has no point of it fixed at all times but
nevertheless has the same form of equations of motion is the problem of motion by inertia
of a body, whose surface may be simply or multi-connected, in an infinitely extending ideal
incompressible fluid (for a derivation of the equations of motion see [2]). This problem
has been intensively studied, but mostly in complete isolation from other problems of rigid
body dynamics. In particular, except for some limited analogies noted by Steklov [3] and
Kharlamov [4](see also [5]) it was not known that the problem in its general form can be
formulated as a Lagrangian or Hamiltonian system. In our work [6], the general problem
was brought to a special version of the form (1). This means that the forces exerted by the
fluid on the body can be replaced, with respect to their effect on the rotational motion of the
body, by a set of gravitational and electromagnetic interactions. In particular, this analogy
has allowed the construction of solutions for the problem of motion of an electrified and
magnetized body from the known solutions of a classical problem [6] and, on the other
hand, allowed the application of all the principles of analytical mechanics to that classical
problem [7].

Equations (1) admit three general first integrals:
(a) Jacobi’s integralI1 = 1

2Ap
2+ 1

2Bq
2+ 1

2Cr
2+ V .

(b) The geometric integralI2 = γ 2
1 + γ 2

2 + γ 2
3 = 1.

(c) An integral linear in the components of angular velocityI3 (say), corresponding to
the vanishing moment of forces around the axis of symmetry of the fields. For simplicity
this integral will not be written in the general case but separately for each of the cases
considered below.

Thus, according to Jacobi’s theorem of the last integrating multiplier, the system (1)
will be integrable and its solution can be reduced to quadratures whenever one more integral
I4 is found [8].

On the other hand, the system (1) can be reduced on any arbitrary level of the cyclic
integralI3 to equivalent Lagrangian and Hamiltonian forms (see, for example, [1] about the
Lagrangian corresponding to (1)) as a system with two degrees of freedom which admits one
integralI1 (I2 = 1 reduces to an identity in any set of generalized coordinates). The system
will be completely integrable in the sense of Liouville (see for example [8, 9]) whenever
the integralI4 exists and is functionally independent ofI1, I3.

In the rest of the present paper we present six new general integrable cases of the system
(1) that generalize most of the known results on the subject by the introduction of several
parameters and thus reveal the striking richness of this system. For each case we briefly
give the necessary forms of the potentialV , the vectorµ and the integralsI3 and I4. In
every case the constancy of those integrals can be verified by the reader in a straightforward
way. We also give a summary of previous results which can be obtained from each one of
our cases as special versions. Whenever met, unless otherwise stated, the symbolsn1, n2,
n3, n, N , s1, s2, s3, a, b, c, c1, c2, c3, a1, a2 andε signify arbitrary real constants.

The results of the present paper were obtained by the method of invariance of the
equations of motion under certain transformations. A simple version of this method,
corresponding to a uniform rotation transformation was introduced in [14] and [1] and
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has proved useful in constructing new integrable cases of a charged body and of a body in
a liquid [6, 14]. The possibility of generalizing this method to include position-dependent
rotation transformation was pointed out in [7]. The method we used to obtain the new cases
has also led to the construction of fifteen conditional integrable cases, valid only on a single
level of I3, and a larger number of particular solutions generalizing known ones. It also
enables the construction of the explicit solution of the equations of motion in many cases.
Those results will be presented in a forthcoming paper.

2. The first case

This case is valid for a body with arbitrary moments of inertia. If in (1) we choose

V = (Aγ 2
1 + Bγ 2

2 + Cγ 2
3 ){b − 1

2[n+ n1(Aγ
2
1 + Bγ 2

2 + Cγ 2
3 )]

2} (2)

µ1 = γ1{(A− B − C)[n+ n1(Aγ
2
1 + Bγ 2

2 + Cγ 2
3 )]

+2n1[A(Aγ 2
1 + Bγ 2

2 + Cγ 2
3 )− (A2γ 2

1 + B2γ 2
2 + C2γ 2

3 )]}
µ2 = γ2{(B − C − A)[n+ n1(Aγ

2
1 + Bγ 2

2 + Cγ 2
3 )]

+2n1[B(Aγ 2
1 + Bγ 2

2 + Cγ 2
3 )− (A2γ 2

1 + B2γ 2
2 + C2γ 2

3 )]}
µ3 = γ3{(C − A− B)[n+ n1(Aγ

2
1 + Bγ 2

2 + Cγ 2
3 )]

+2n1[B(Aγ 2
1 + Bγ 2

2 + Cγ 2
3 )− (A2γ 2

1 + B2γ 2
2 + C2γ 2

3 )]} (3)

the system (1) will be completely integrable with

I3 = Apγ1+ Bqγ2+ Crγ3+ [n+ n1(Aγ
2
1 + Bγ 2

2 + Cγ 2
3 )](Aγ

2
1 + Bγ 2

2 + Cγ 2
3 ) (4)

I4 = 1
2A

2{p + γ1[n+ n1(Aγ
2
1 + Bγ 2

2 + Cγ 2
3 )]}2

+ 1
2B

2{q + γ2[n+ n1(Aγ
2
1 + Bγ 2

2 + Cγ 2
3 )]}2

+ 1
2C

2{r + γ3[n+ n1(Aγ
2
1 + Bγ 2

2 + Cγ 2
3 )]}2

−{b − n1[Apγ1+ Bqγ2+ Crγ3

+[n+ n1(Aγ
2
1 + Bγ 2

2 + Cγ 2
3 )](Aγ

2
1 + Bγ 2

2 + Cγ 2
3 )]}

×(BCγ 2
1 + CAγ 2

2 + ABγ 2
3 ). (5)

We first note that the fourth integral is quadratic in velocities and contains linear terms.
If here we setn1 = 0, this result becomes equivalent to the case due to Clebsch [11] in the
problem of a body in a liquid. If, further, we putn = 0, we obtain a case which has, in
addition to the previous interpretation, two physically different interpretations.

(a) The case of motion of a rigid body about a fixed point under the action of the
approximate field of a distant Newtonian centre of attraction [12] (see also [10]).

(b) Brun’s problem of the motion of a body about a fixed point under the assumption
that each element of the body is attracted to a fixed plane passing through the fixed point
by a force that is proportional to the distance to that plane [13].

If in (2)–(5) we putn1 = b = 0, we get a case that was found in [14] which generalizes
an earlier case of motion of a charged body found by Grioli [15]. If further we putn = 0,
we get the basic case due to Euler.

3. The second case

This is a case of complete dynamical symmetryB = C = A. Let

V = 1
2(c1γ

2
1 + c2γ

2
2 + c3γ

2
3 )− 1

2A(n+ n1γ
2
1 + n2γ

2
2 + n3γ

2
3 )

2 (6)

µ1 = −Aγ1[n+ n1γ
2
1 + γ 2

2 (3n2− 2n1)+ γ 2
3 (3n3− 2n1)]
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µ2 = −Aγ2[n+ γ 2
1 (3n1− 2n2)+ n2γ

2
2 + (3n3− 2n2)γ

2
3 ]

µ3 = −Aγ3[n+ γ 2
1 (3n1− 2n3)+ γ 2

2 (3n2− 2n3)+ n3γ
2
3 ] (7)

then

I3 = A(pγ1+ qγ2+ rγ3+ n+ n1γ
2
1 + n2γ

2
2 + n3γ

2
3 ) (8)

I4 = A((c1− 2n1I3)[p + (n+ n1γ
2
1 + n2γ

2
2 + n3γ

2
3 )γ1]2

+(c2− 2n2I3)[q + (n+ n1γ
2
1 + n2γ

2
2 + n3γ

2
3 )γ2]2

+(c3− 2n3I3)[r + (n+ n1γ
2
1 + n2γ

2
2 + n3γ

2
3 )γ3]2)

−(2n2I3− c2)(2n3I3− c3)γ
2
1 − (2n3I3− c3)(2n1I3− c1)γ

2
2

−(2n1I3− c1)(2n2I3− c2)γ
2
3 . (9)

Note that in (9)I3 stands for its expression (8). In the general case, the fourth integral
is a polynomial of the third degree in the velocities with leading coefficients depending on
γ. In the special case whenn1 : n2 : n3 :: c1 : c2 : c3, a constant factor can be dropped out
and the integral becomes of the second degree.

The present case generalizes by the introduction of the three parametersn1, n2, n3

the case of motion of a body in liquid known as Clebsch’s case of complete dynamical
symmetry.

4. The third case

It is also a case of complete dynamical symmetryB = C = A. For it we have

V = s1γ1+ s2γ2+ s3γ3− 1

2

abc

A

(
γ 2

1

a
+ γ

2
2

b
+ γ

2
3

c

)
− 1

2
A(n+ n1γ1+ n2γ2+ n3γ3)

2

+1

2
(n+ n1γ1+ n2γ2+ n3γ3)[(b + c)γ 2

1 + (c + a)γ 2
2 + (a + b)γ 2

3 ] (10)

µ1 = An1+ γ1[a − An+ 2A(n1γ1+ n2γ2+ n3γ3)]

µ2 = An2+ γ2[b − An+ 2A(n1γ1+ n2γ2+ n3γ3)]

µ3 = An3+ γ3[c − An+ 2A(n1γ1+ n2γ2+ n3γ3)] (11)

and

I3 = A(pγ1+ qγ2+ γ3r)− 1
2[(b + c)γ 2

1 + (c + a)γ 2
2 + (a + b)γ 2

3 ]

+A(n+ n1γ1+ n2γ2+ n3γ3) (12)

I4 = 1
2A{(b + c)[p + (n1γ1+ n2γ2+ n3γ3+ n)γ1]2

+(c + a)[q + (n1γ1+ n2γ2+ n3γ3+ n)γ2]2

+(a + b)[r + (n1γ1+ n2γ2+ n3γ3+ n)γ3]2}
+(−n1I3+ s1)[A(p + (n1γ1+ n2γ2+ γ3n3+ n)γ1)+ aγ1]

+(−n2I3+ s2)[A(q + (n1γ1+ n2γ2+ γ3n3+ n)γ2)+ bγ2]

+(−n3I3+ s3)[A(r + (n1γ1+ n2γ2+ γ3n3+ n)γ3)+ cγ3]

−abc[(p + (n1γ1+ n2γ2+ γ3n3+ n)γ1)γ1/a

+(q + (n1γ1+ n2γ2+ γ3n3+ n)γ2)γ2/b

+(r + (n1γ1+ n2γ2+ γ3n3+ n)γ3)γ3/c]. (13)

The fourth integral is a polynomial of the second degree in velocities with leading
coefficients depending onγ. For n1 = n2 = n3 = 0, our case becomes equivalent to a case
found by Rubanovsky [16] in the dynamics of a body in liquid, which, in turn, generalizes
an earlier result in the same subject due to Lyapunov [17].
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5. The fourth case

In this case the body has the famous Kovalevskaya configurationA = B = 2C and

V = C(a1γ1+ a2γ2)− Ckγ3(n+ n1γ1+ n2γ2)− 1
2C(n+ n1γ1+ n2γ2)

2(2γ 2
1 + 2γ 2

2 + γ 2
3 )

(14)

µ1 = C(−nγ1− n1γ
2
1 + 2n1γ

2
2 + n1γ

2
3 − 3n2γ1γ2)

µ2 = C(−γ2n+ 2n2γ
2
1 − n2γ

2
2 + n2γ

2
3 − 3n1γ1γ2)

µ3 = C(k − 3nγ3− 5n1γ1γ3− 5n2γ2γ3) (15)

I3 = C(2γ1p + 2qγ2+ rγ3)+ Ckγ3+ C(n+ n1γ1+ n2γ2)(2γ
2
1 + 2γ 2

2 + γ 2
3 ) (16)

I4 =
{
p + (n+ n1γ1+ n2γ2)γ1|2− q + (n+ n1γ1+ n2γ2)γ2|2

−
(
a1− n1

I3

C

)
γ1+

(
a2− n2

I3

C

)
γ2

}2

+
{

2(p + (n+ n1γ1+ n2γ2)γ1)(q + (n+ n1γ1+ n2γ2)γ2)

−
(
a1− n1

I3

C

)
γ2−

(
a2− n2

I3

C

)
γ1

}2

+ 2k(r + (n+ n1γ1+ n2γ2)γ3− k)

×[(p + (n+ n1γ1+ n2γ2)γ1)
2+ (q + (n+ n1γ1+ n2γ2)γ2)

2]

−4kγ3

{(
a1− n1

I3

C

)
[p + (n+ n1γ1+ n2γ2)γ1]

+
(
a2− n2

I3

C

)
[q + (n+ n1γ1+ n2γ2)γ2]

}
. (17)

As in the classical Kovalevskaya’s case, the fourth integral has the fourth degree in
velocities. The present result generalizes Kovalevskaya’s by including four physically
significant parametersk, n, n1, n2. It also generalizes some earlier results of the present
author. Forn1 = n2 = 0, we get the case of a body in a liquid [6] and if, moreover,n = 0,
we get the case of a heavy gyrostat found in [18] (see also [19])

6. The fifth case. A case of singular potential

The present case is, like the preceding one, valid forA = B = 2C. For it we have

V =C(a1γ1+ a2γ2)+ ε√
1− γ 2

3

− 1

2
C

n+ n1γ1+ n2γ2+ N√
1− γ 2

3

2

(2γ 2
1 + 2γ 2

2 + γ 2
3 )

(18)

µ1 = C
(
−nγ1− n1γ

2
1 + 2n1γ

2
2 + n1γ

2
3 − 3n2γ1γ2+ Nγ1

(1− γ 2
3 )

3
2

)

µ2 = C
(
−nγ2+ 2n2γ

2
1 − n2γ

2
2 + n2γ

2
3 − 3n1γ1γ2+ Nγ2

(1− γ 2
3 )

3
2

)

µ3 = −Cγ3

3n+ 5n1γ1+ 5n2γ2+ Nγ3√
1− γ 2

3

 (19)
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I3 = C(2pγ1+ 2qγ2+ rγ3)+ C
n+ n1γ1+ n2γ2+ N√

1− γ 2
3

 (2γ 2
1 + 2γ 2

2 + γ 2
3 ) (20)

I4 =


p +

n+ n1γ1+ n2γ2+ N√
1− γ 2

3

 γ1

2

−
q +

n+ n1γ1+ n2γ2+ N√
1− γ 2

3

 γ2

2

−
(
a1− n1

I3

C

)
γ1+

(
a2− n2

I3

C

)
γ2


2

+

p +

n+ n1γ1+ n2γ2+ N√
1− γ 2

3

 γ1


×
q +

n+ n1γ1+ n2γ2+ N√
1− γ 2

3

 γ2



−
(
a1− n1

I3

C

)
γ2−

(
a2− n2

I3

C

)
γ1


2

+ 2

(
ε − NI3

C

)

×


p +

n+ n1γ1+ n2γ2+ N√
1− γ 2

3

 γ1

2

+
q +

n+ n1γ1+ n2γ2+ N√
1− γ 2

3

 γ2

2

{√

1− γ 2
3

}−1

+ (ε − (NI3/C))
2

1− γ 2
3

. (21)

The casen1 = n2 = N = 0 was found in [20]. The casen = n1 = n2 = N = 0 was
found in [21]. If, moreover,ε = 0, we get the original case of Kovalevskaya.

7. Generalization of Lagrange’s case

In the problems considered above in the dynamics of rigid bodies there are only two cases
that were not generalized by the above results. Namely, Lagrange’s case of a heavy top
and Steklov’s case of a body in a liquid.

Lagrange’s case admits a simple generalization that contains three arbitrary functions.
In fact, if we choose

B = A,V = V (γ3) µ = (γ1F
′(γ3), γ2F

′(γ3),−F(γ3)+ (γ 2
1 + γ 2

2 )G
′(γ3)− 2γ3G(γ3))
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whereF andG are arbitrary functions ofγ3 the system (1) admits the integrals:

I3 = A(pγ1+ qγ2)+ γ3(Cr − F(γ3))+ (γ 2
1 + γ 2

2 )G(γ3) I4 = Cr − F(γ3).

Thus, of all the known results only the case of a body in liquid found by Rubanovsky
[16] remains without generalization. This case includes as special versions an earlier case
due to Steklov [3] and the Jonkovsky–Volterra case of a gyrostat moving by inertia [22, 23].
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[7] Yehia H M 1986J. Méc. Théor. Appl.5 935–9
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